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Abstract Exact bound state solutions and the corresponding wave functions of the
Schrödinger equation for some non-central potentials including Makarov potential,
modified-Kratzer plus a ring-shaped potential, double ring-shaped Kratzer potential,
modified non-central potential and ring-shaped non-spherical oscillator potential are
obtained by using the Laplace transform approach. The energy spectrums of the
Hartmann potential, modified-Kratzer potential and ring-shaped oscillator potential
are also briefly studied as special cases. It is seen that our analytical results for all
these potentials are consistent with those obtained by other works. We also give some
numerical results obtained for the modified non-central potential for different values
of the related quantum numbers.

Keywords Exact solution · Laplace transform · Non-central potential ·
Schrödinger equation

1 Introduction

An important part of chemistry based on quantum mechanics and also of nuclear
physics include to study ro-vibrational energy levels of molecules and atoms having
multi-electrons, the distorted nucleus and the correlation states of quantum fluid sys-
tems [1]. Describing ring-shaped molecules (like benzene) and interactions between
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deformed pairs of nuclei have received many applications in the above areas of phys-
ics [2]. Because of the above statements, the non-central potentials have been exten-
sively studied in literature. Moreover, these potentials provide a useful theoretical
ground describing the interaction between the ring-shaped molecules and the interac-
tion between distorted nucleus [1,2].

Non-central potentials including also ring-shaped molecular potentials include two
parts: The spherical harmonic oscillator potentials and angular dependent potentials as
a second part. Such potentials studying in non-relativistic and/or relativistic quantum
mechanical viewpoints by using different methods could be listed as: Hartmann [3] and
Makarov potential [4] within the supersymmetric approach [5,6], algebraic investiga-
tion of the ring-shaped potential [7], a new anharmonic oscillator potential studying in
terms of hypergeometric functions [8], investigation of a non-central potential param-
eterizing with Ĉ,C,C0 based on L2-series solution [9], the Coulombic ring-shaped
[10] and Makarov potential [11] within the Nikiforov-Uvarov formalism, relativis-
tic searching of Makarov potential by factorization method [12], double ring-shaped
oscillator potential within the supersymmetric formalism [13], the Hartmann potential
via Laplace transforms [14], searching of some non-central potentials by using exact
quantization rule [15], etc.

The non-central potentials are needed to obtain better results than those given of
central potentials about the dynamical properties of the molecular structures and inter-
actions [16]. Meanwhile, these potentials make it possible to obtain algebraic exact
solutions of the Schrödinger equation (SE). To obtain the exact solutions of the SE for
molecular potentials is one of the basic problems in quantum physics [17]. In this man-
ner, we search in the present work the exact bound state solutions of the SE for some
non-central potentials including the ring-shaped non-spherical oscillator potential, the
Makarov potential, the modified Kratzer plus a ring-shaped potential and the double
ring-shaped Kratzer potential. The Laplace transform approach (LTA) will be used to
find the energy levels and the corresponding wave functions of the above potentials.

The LTA has been widely used to obtain the exact solutions of central and non-cen-
tral potentials in the non-relativistic domain [14,18–20]. This approach is also used
to find some recursion relations in terms of step-up and step-down operators for the
harmonic oscillator [21]. The LTA describes a simple way for obtaining the solutions
of the SE by reducing it to a first-order differential equation meaning that whose
solutions may be obtained easily.

The organization of this letter is as follows. In Sect. 2, the time-independent SE
in spherical coordinates is separated into radial and angular equations for a particle
subjected to a non-central potential. In Sect. 3, the LTA is applied to the radial SE
to obtain the energy spectrum of the above non-central potentials and the results are
compared with those obtained before.

2 Equations in spherical coordinates

Time-independent SE in spherical coordinates is written [22]

{ �∇2 − MV (r, θ, φ)+ M En�

}
�(r, θ, φ) = 0 , (1)
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where M = 2m
h̄2 , En� is the particle energy and V (r, θ, φ) is the potential field giving

V (r, θ, φ) = V (r)+ V (θ)

r2 + V (φ)

r2sin2θ
. (2)

Writing the total wave function as

�(r, θ, φ) = R(r)�(θ)(sinθ)−1/2�(φ) ;R(r) = R(r)

r
(3)

and using the method of separation of variables gives the following Eqs. [14,23]

{
d2

dφ2 − MV (φ)+ m2
}
�(φ) = 0, (4a)

{
d2

dθ2 − MV (θ)− ξ

sin2θ
+ �2

}
�(θ) = 0; ξ = m2 − 1

4
, (4b)

{
d2

dr2 − MV (r)− L

r2 + M En�

}
R(r) = 0; L = �2 − 1

4
. (4c)

where m2 and �2 are separation constants. Throughout this paper V (φ) will be
V (φ) = 0, then Eq. (4a) becomes

{
d2

dφ2 + m2
}
�(φ) = 0 , (5)

and its solution

�(φ) = ane±imφ, m = 0, 1, 2, . . . (6)

Now we use the LTA applied to Eq. (4c) to find the bound state solutions and the
corresponding wave functions of the non-central potentials. It is well known that the
contributions coming from the angular part of the potential are placed in the parameter
� in Eq. (4b). So, these contributions are taken from related literature while we are
looking for the solutions of Eq. (4c).

3 Bound state solutions

3.1 Makarov potential

Inserting the Makarov potential [4]

V (r, θ) = α

r
+ β

r2sin2θ
+ γ cosθ

r2sin2θ
, (7)
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into Eq. (4b) we obtain the polar angle equation

{
d2

dθ2 − 1

sin2θ

(
ξ + M

r2 (β + γ cosθ)

)
+ �2

}
�(θ) = 0, (8)

where the parameter � is obtained as � = { 1
2 [β+m2 +√

(β + m2)2 − γ 2 ]}1/2 +s + 1
2

in Ref. [15] and s is a positive integer.
The radial Eq. (4c) becomes for the Makarov potential

{
d2

dr2 − Mα

r
− L

r2 + M En�

}
R(r) = 0, (9)

Rewriting the radial wave function as ψ(r) = r− 1
2 R(r) and inserting it into Eq. (9)

we get

{
d2

dr2 + 1

r

d

dr
−

(
μ2

1 + μ2
2

r
+ μ2

3

r2

)}
ψ(r) = 0, (10)

where

μ2
1 = −M En�; μ2

2 = Mα; μ2
3 = 1

4
+ L (11)

In order to obtain an equation suitable for applying the Laplace transform approach,
we take the wave function as ψ(r) = r δg(r) with δ is a constant in Eq. (10) and then
obtain

r2 d2g(r)

dr2 + (2δ + 1)r
dg(r)

dr
−

(
μ2

1r2 + μ2
2r + μ2

3 − δ2
)

g(r) = 0 , (12)

Physically acceptable wave function has to be finite when r → ∞ in Eq. (12), so the
parameter δ should be δ = −μ3 and we get

{
d2

dr2 − (2μ3 − 1)
1

r

d

dr
− μ2

1r − μ2
}

g(r) = 0 , (13)

By applying the Laplace transform defined as [24]

L {g(r)} = f (t) =
∞∫

0

dre−tr g(r), (14)

to Eq. (13), we obtain

(
t2 − μ2

1

) d f (t)

dt
+

{
(2μ3 + 1) t + μ2

2

}
f (t) = 0. (15)
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which is a first-order differential equation and its solution is written as

f (t) = a′(t + μ1)
−(2μ3+1)

(
t + μ1

t − μ1

) μ2
2

2μ1
+ 2μ3+1

2

. (16)

In order to get single-valued wave functions, it should be

μ2
2

2μ1
+ 2μ3 + 1

2
= −n, n = 0, 1, 2, . . . (17)

With the help of this condition, the function in Eq. (16) could be expended into
series as

f (t) = a′′
n∑

k=0

(−1)kn!
(n − k)!k! (2μ1)

k (t + μ1)
−(2μ3+1)−k , (18)

where a′′ is another constant. The solution of Eq. (13) is immediately obtained by
applying the inverse-Laplace transformation [24]

g(r) = a′′′r2μ3e−μ1r
n∑

k=0

(−1)kn!
(n − k)!k!

�(2μ3 + 1)

�(2μ3 + 1 + k)
(2μ1r)k (19)

which gives finally the eigenfunctions of the Makarov potential

R(r) = anrμ3+ 1
2 e−μ1r

1 F1(−n, 2μ3 + 1, 2μ1r). (20)

where an is normalization constant and used the following properties of hypergeomet-
ric functions [25]

1 F1(−n, σ, z) =
n∑

m=0

(−1)mn!
(n − m)!m!

�(σ)

�(σ + m)
zm . (21)

Equation (17) with Eq. (11) gives us the following algebraic expression of the bound
state of the Makarov potential

En� = − Mα2

4
(
n + 1

2 + �
)2 . (22)

which is the same result with the ones given in Ref. [15].
Setting in Eq. (7) γ = 0 gives the Hartmann potential and Eq. (22) turns into
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En� = − Mα2

(2n + �′ + 1)2
; �′ = 2

√
β + m2 + 2s + 1. (23)

which is the exact energy states of the Hartmann potential [11,15].

3.2 Modified Kratzer plus a ring-shaped potential

This potential has the form

V (r, θ) = D0

(
1 − r0

r

)2 + β

r2

(
cosθ

sinθ

)2

, (24)

where D0 is the association energy and r0 is the equilibrium distance of the molecule.
Inserting this into Eqs. (4b) and (4c), we obtain the angular dependent and radial
equations as

{
d2

dθ2 + βM − ξ + βM

sin2θ
+ �2

}
�(θ) = 0, (25a)

{
d2

dr2 − M D0r2
0 + L

r2 + 2M D0r0

r
+ M(En� − D0)

}
R(r) = 0. (25b)

where the parameter � is obtained as �2 = (
√
β + m2 + s + 1/2)2 − β in Ref. [15].

We apply the LTA to Eq. (25b) to obtain the exact bound state solutions and the
corresponding eigenfunctions of the modified Kratzer plus a ring-shaped potential. We
follow the same procedure in the above section, since the radial equations in Eq. (10)
and Eq. (25b) have the same form. In the present case, the parameters in Eq. (11)
become

μ2
1 = M(D0 − En�); μ2

2 = −2M D0r0; μ2
3 = L + M D0r2

0 + 1

4
(26)

Using the same transformations in the above section on the wave functions and
requirements, we obtain the radial eigenfunctions of the modified Kratzer plus a ring-
shaped potential as

R(r) = bnrμ3+ 1
2 e−μ1r

1 F1(−n, 2μ3 + 1, 2μ1r) , (27)

where bn is normalization constant.
In order to get a single-valued wave functions the parameters must be satisfied an

equation like Eq. (17) which gives the energy spectrum of the modified Kratzer plus
a ring-shaped potential as

En� = D0 −
⎡
⎣2n + 1 +

√
M D0r2

0 + �2

2M D0r0

⎤
⎦

−2

, (28)
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which is the same result with the one given in Ref. [15]. If β = 0 in Eq. (24), we
have the modified Kratzer potential whose energy spectrum is obtained from the last
equation

En� = D0 −
⎡
⎣ 2M D0r0

2n + 1 +
√

M D0r2
0 + L(L + 1)+ 1

4

⎤
⎦

2

. (29)

where the parameter L is defined as L(L + 1) = �2(β → 0) − 1
4 . This spectrum is

exactly of the modified Kratzer potential [26].

3.3 Double ring-shaped Kratzer potential

This potential is given [27]

V (r, θ) = −2D0

{
r0

r
− 1

2

(
r2

0

r2

)}
+ 1

r2

(
β

sin2θ
+ γ

cos2θ

)
, (30)

which gives for β = γ = 0 the Kratzer potential. For this potential, Eqs. (4b) and (4c)
gives the following equations

{
d2

dθ2 − Mγ

cos2θ
− ξ + βM

sin2θ
+ �2

}
�(θ) = 0 , (31a)

{
d2

dr2 + M En� − 2M D0r0

r
− M D0r2

0 + L

r2

}
R(r) = 0. (31b)

where the parameter � is obtained as � = √
β2 + m +

√
1
4 + γ + 2s + 1 in Ref. [15].

Following the same procedure in last two sections we obtain the energy levels
of the double ring-shaped Kratzer potential and the corresponding eigenfunctions,
respectively,

En� = −M

⎧⎨
⎩

D0r0

n + 1
2 +

√
�2 + M D0r2

0

⎫⎬
⎭

2

, (32)

and

R(r) = cnrμ3+ 1
2 e−μ1r

1 F1(−n, 2μ3 + 1, 2μ1r). (33)

where cn is normalization constant and the parameters in Eq. (11) have the values in
the present case

μ2
1 = −M E; μ2

2 = 2M D0r0; μ2
3 = L + M D0r2

0 + 1

4
(34)
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It is seen that the result given in Eq. (32) is consistent with the one obtained in Ref.
[27].

3.4 Modified non-central potential

The modified non-central potential is written [28]

V (r, θ) = D
(

1 − a

r

)2 + β

r2sin2θ
+ γ cosθ

r2sin2θ
, (35)

where the parameter D corresponds to the association energy and a corresponds to
the equilibrium distance of the molecule. The radial part of this potential is similar
to that of the potential in Eq. (24). By inserting Eq. (35) into Eqs. (4b) and (4c) we
obtain the following angular dependent and radial equations, respectively,

{
d2

dθ2 − Mβ + ξ + Mγ cosθ

sin2θ
+ �2

}
�(θ) = 0, (36a)

{
d2

dr2 + M(En� − D)+ 2M Da

r
− M Da2 + L

r2

}
R(r) = 0. (36b)

where the parameter � is given as � =
√

1
2

√
Mβ + m2 + √

(m2 + Mβ)2 − (Mγ )2+s
in Ref. [16]. In the present case, applying the LTA as in the above subsections gives
the energy spectrum and the corresponding eigenfunctions of the modified non-central
potential

En� = D −
(

2
√

M Da

2n + 1 + √
4M Da2 + 4�(�+ 1)+ 1

)2

, (37)

and

R(r) = dnrμ3+ 1
2 e−μ1r

1 F1(−n, 2μ3 + 1, 2μ1r). (38)

where dn is normalization constant and

μ2
1 = −M(En� − D); μ2

2 = −2M Da; μ2
3 = L + M Da2 + 1

4
. (39)

Now we give the results our numerical analysis for the diatomic molecule N2 in
Table 1 where the energy eigenvalues are given for different values of quantum num-
bers and the parameters of β and γ . Our parameter values for N2 molecule are as
follows: D = 11.9384 eV, μ = 7.00335 amu and a = 1.0940 Å [26]. From Table 1,
we see that the contributions coming from angular dependent part of the potential
in Eq. (37) are negligible than the results obtained for the pure Kratzer potential
(β = γ = 0).
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Table 1 Energy eigenvalues of the modified non-central potential for different values of quantum numbers
in eV for N2 molecule

En� Ref. [26]

n s m β = γ = 0.1 β = γ = 0

0 0 0 11.93837780671 0.05443703 0.054430
1 0 0 11.93837780698 0.16207785 0.162057

1 1 11.93837780740 0.16354346 0.162546
2 0 0 11.93837780726 0.26826281 0.268229

1 1 11.93837778077 0.26970864 0.268711
2 2 11.93837780810 0.27308086 0.269675

3 0 0 11.93837780754 0.37301804 0.372972
1 1 11.93837780800 0.37444445 0.373447
2 2 11.93837780840 0.37777137 0.374398
3 3 11.93837780880 0.38299550 0.375823

3.5 Ring-shaped non-spherical oscillator potential

As final potential, we search the energy levels and the corresponding wave functions
of the ring-shaped oscillator potential which is given [29]

V (r, θ) = κr2 + ω

r2 + 1

r2 βcosec2θ, (40)

Inserting this potential to the SE gives the following two equations

{
d2

dθ2 − ξ + βM

sin2θ
+ �2

}
�(θ) = 0, (41a)

{
d2

dr2 − Mκr2 − L + Mω

r2 + M En�

}
R(r) = 0. (41b)

where the parameter � is given as � = √
β + m2 + 1

2 + s [15].
Defining a new variable r2 = u, taking a trial wave function as R = u−τ/2φ(u)

and using the following abbreviations

μ2
1 = −Mκ; μ2

2 = M En�; τ(τ + 1) = L + Mω (42)

Equation (41b) turns into

u
d2φ(u)

du2 −
(
τ − 1

2

)
dφ(u)

du
− 1

4

(
μ2

1u − μ2
2

)
φ(u) = 0, (43)

Applying the Laplace transform to Eq. (43) we obtain a first-order differential equation

(
t2 − μ2

1

4

)
d f (t)

dt
+

{(
τ + 3

2

)
t − μ2

2

4

}
f (t) = 0 , (44)
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whose solution is

f (t) = e′ (t + μ1

2

)− μ2
2

4μ1
− 1

2

(
τ+ 3

2

) (
t − μ1

2

) μ2
2

4μ1
− 1

2

(
τ+ 3

2

)
, (45)

where e′ is a constant determining later.
We find a physically acceptable wave function (finite) only if

μ2
2

4μ1
− 1

2

(
τ + 3

2

)
= n, n = 0, 1, 2, . . . (46)

By using this requirement and expanding the function in Eq. (45) into series, we get

f (t) = e′′
n∑

k=0

(−1)kn!
(n − k)!k!

(
t + μ1

2

)−(τ+ 3
2 +k)

, (47)

where e′′ is another constant. Using the inverse Laplace transform we obtain the solu-
tion of Eq. (43)

φ(u) = e′′′e−μ1u/2uτ+1/2
1 F1

(
−n, τ + 3

2
, u

)
, (48)

where e′′′ is a constant and used the property of the hypergeometric functions given
in Eq. (21). The radial wave functions of the ring-shaped oscillator is

R(u) = ene−μ1u/2u(τ+1)/2
1 F1

(
−n, τ + 3

2
, u

)
, (49)

where en is normalization constant. Equation (46) with the help of Eq. (42) gives the
energy spectrum of the ring-shaped non-spherical oscillator potential

En� = 2

√
κ

M

[
2n +

√
�2 + Mω + 1

]
. (50)

The ring-shaped oscillator potential [7] is obtained by setting ω = 0 in Eq. (40)
which gives from last equation

En� =
√

16κ

M

(
n + �′ + 1

2

)
. (51)

where �′ = �/2 and last equation is the same result with the ones obtained in Ref. [30]
if setting κ = ω2

4 and M = 1.
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4 Conclusions

We have obtained the exact energy spectrum of some non-central potentials such as
Makarov potential, modified-Kratzer plus a ring-shaped potential, double ring-shaped
Kratzer potential, modified non-central potential and ring-shaped non-spherical oscil-
lator potential by applying the Laplace transform approach to the related part of the
Schrödinger equation in spherical coordinates. We have also obtained the correspond-
ing eigenfunctions of the above diatomic potentials. We have discussed briefly some
special cases of the potentials and observed that our analytical results and also the
results for the special cases are the same with the ones obtained in literature. It is
shown that the Laplace transform approach is an applicable formalism to obtain the
energy spectrum and the eigenfunctions of some non-central potentials.
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